ARTICLE

Kinetic study of the electron-transfer oxidation of the phenolate anion of a vitamin E model by molecular oxygen generating superoxide anion in an aprotic medium †

Ikuo Nakanishi,**a,b* **Kentaro Miyazaki,***c,d* **Tomokazu Shimada,***c,d* **Yuko Iizuka,***^e* **Keiko Inami,***^e* **Masataka Mochizuki,***^e* **Shiro Urano,***^d* **Haruhiro Okuda,***^c* **Toshihiko Ozawa,***^a* **Shunichi Fukuzumi,****^b* **Nobuo Ikota ****^a* **and Kiyoshi Fukuhara ****^c*

- *^a Redox Regulation Research Group, Research Center for Radiation Safety, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan. E-mail: nakanis@nirs.go.jp; Fax: 81-43-255-6819*
- *^b Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan. E-mail: fukuzumi@chem.eng.osaka-u.ac.jp; Fax: 81-6-6879-7370*
- *^c Division of Organic Chemistry, National Institute of Health Sciences, Setagaya-ku, Tokyo 158-8501, Japan*
- *^d Department of Applied Chemistry, Shibaura Institute of Technology, Minato-ku, Tokyo 108-8548, Japan*
- *^e Division of Organic and Bioorganic Chemistry, Kyoritsu College of Pharmacy, Mitato-ku, Tokyo 105-8512, Japan*

Received 18th June 2003, Accepted 23rd September 2003 First published as an Advance Article on the web 13th October 2003

Electron-transfer reduction of molecular oxygen (O_2) by the phenolate anion (1^-) of a vitamin E model, 2,2,5,7,8-pentamethylchroman-6-ol (**1H**), occurred to produce superoxide anion, which could be directly detected by a low-temperature EPR measurement. The rate of electron transfer from 1^- to O_2 was relatively slow, since this process is energetically unfavourable. The one-electron oxidation potential of **1**- determined by cyclic voltammetric measurements is sufficiently negative to reduce 2,2-bis(4-*tert*-octylphenyl)-1-picrylhydrazyl radical (DOPPH) to the corresponding one-electron reduced anion, DOPPH-, suggesting that **1**- can also act as an efficient radical scavenger.

Introduction

Vitamin E $(\alpha$ -tocopherol) is one of the most important biological phenolic antioxidants that can act as an efficient hydrogen-atom donor to active oxygen radicals, such as hydroxyl radical ('OH) and lipid peroxyl radical (LOO'), showing efficient antioxidative activities against oxidative stress in biological systems.**¹** In addition to its protective radicalscavenging action, α-tocopherol is known to promote lowdensity lipoprotein (LDL) oxidation,**²** which is an important event in the development of atherosclerosis.**³** The oxidation of LDL may be catalyzed by metal ions in advanced atherosclerotic lesions **4–6** and α-tocopherol can act as a pro-oxidant *via* reduction of Cu(II) to Cu(I).⁷ α -Tocopherol has also been reported to produce superoxide anion $(O_2^{\text{-}})$ in apoptosisinduced cells.**⁸** The apoptosis has been regarded as responsible for the cell toxicity of α-tocopherol.**9–11** Natural-occurring flavonoids such as $(+)$ -catechin and quercetin are also known to scavenge active oxygen radicals efficiently.**¹²** However, there is also considerable evidence for the generation of reactive oxygen species (ROS) by such antioxidants under specific reaction conditions, such as in the presence of a base or metal ions.**¹³** We have recently reported that the dianion species of $(+)$ -catechin and its derivative are generated under strongly basic conditions and act as a strong electron donor, which can reduce molecular oxygen (O_2) to O_2^{\bullet} ⁻.^{14,15} Yamashita *et al*. have reported that quercetin induces oxidative DNA damage and forms 8-oxo-dG

† Electronic supplementary information (ESI) available: the cyclic vol t ammogram of $\mathbf{1}^-$ and the experimental EPR spectrum of $\mathbf{1}^*$ with the computer simulation spectrum. See http://www.rsc.org/suppdata/ob/b3/ b306758k/

by reacting with $Cu(II)$.¹⁶ With regard to the antioxidant and pro-oxidant properties of α-tocopherol, there have been a number of reports demonstrating the radical-scavenging ability.¹⁷⁻²¹ However, whether generation of O_2 ⁻ results from the reaction between α -tocopherol itself and O_2 or not has yet to be clarified.

The present work has been performed to clarify this point by determining the rate for the generation of O_2 ⁻ in the reaction between the anion species of an α -tocopherol model, 2,2,5,7,8pentamethylchroman-6-ol (1H), and O₂ under basic conditions in an aprotic medium. The radical scavenging ability of the αtocopherol model anion *via* electron transfer reactions is also reported. Detailed spectroscopic and kinetic analyses provide valuable mechanistic insight into the O_2 ⁻ formation by α -tocopherol as well as the radical scavenging ability.

Experimental

Materials

2,2,5,7,8-Pentamethylchroman-6-ol (**1H**) was purchased from Wako Pure Chemical Ind. Ltd., Japan. Tetra-*n*-butylammonium hydroxide (1.0 M in methanol) was obtained commercially from Aldrich and used as received. Tetra-*n*-butylammonium perchlorate (Bu**4**NClO**4**) used as a supporting electrolyte for the electrochemical measurements was purchased from Tokyo Chemical Industry Co., Ltd., Japan, recrystallized from ethanol, and dried under vacuum at 313 K. 2,2-Bis(4-*tert*octylphenyl)-1-picrylhydrazyl radical (DOPPH) was obtained commercially from Aldrich. Acetonitrile (MeCN; spectral grade) was purchased from Nacalai Tesque, Inc., Japan and used as received.

This journal is © The Royal Society of Chemistry 2003 \vert Org. Biomol. Chem., 2003, 1, 4085–4088 4085

[:] 10.1039/ b306758k 10.1039/b306758 $\ddot{8}$

Spectral and kinetic measurements

Since the phenolate anion of $1H (1^-)$ is readily oxidized by molecular oxygen (O**2**), reactions were carried out under strictly deaerated conditions for generation of **1**-. A continuous flow of Ar gas was bubbled through a MeCN solution containing **1H** $(2.0 \times 10^{-4} \text{ M})$ in a square quartz cuvette (10 mm i.d.) with a glass tube neck for 10 min. The neck of the cuvette was sealed to ensure that air would not leak into the cuvette by using a rubber septum. A microsyringe was used to inject Bu**4**NOMe $(0-4.0 \times 10^{-4} \text{ M})$, which was also deaerated, into the cuvette to produce **1**-. UV–vis spectral changes associated with this reaction were monitored using an Agilent 8453 photodiode array spectrophotometer. The reaction of 1^- with O_2 was carried out by adding a stock solution of **1**- to an MeCN solution of O**2** in the cuvette. The concentrations of O_2 in the solution were adjusted by purging with Ar, air, or O_2 for 10 min prior to the measurements ($[O_2] = 0$, 2.7×10^{-3} , or 1.3×10^{-2} M), respectively. The oxygen concentration was determined by the photooxidation of 10-methyl-9,10-dihydroacridine with oxygen in the presence of HClO**4** in MeCN as reported previously.**²²** The rates of electron transfer from 1^- to O_2 were determined by monitoring the absorbance change at 325 nm due to **1**-. Pseudo-firstorder rate constants (k_{obs}) were determined by least-squares curve fitting using a personal computer. The first-order plots of $ln(A_{\infty} - A)$ *vs.* time (where A_{∞} and A denote the final absorbance and the absorbance at a given reaction time, respectively) were linear for three or more half-lives, with a correlation coefficient of $\rho > 0.999$.

Cyclic voltammetry

The cyclic voltammetry measurements were performed on an ALS-630A electrochemical analyzer in deaerated MeCN containing 0.10 M Bu**4**NClO**4** as a supporting electrolyte. The Pt working electrode (BAS) was polished with BAS polishing alumina suspension and rinsed with acetone before use. The counter electrode was a platinum wire. The measured potentials were recorded with respect to an $Ag/AgNO₃ (0.01 M)$ reference electrode. The $E_{1/2}$ values (*vs.* Ag/AgNO₃) were converted to those *vs*. SCE by adding 0.29 V.**23** All electrochemical measurements were carried out at 298 K under an atmospheric pressure of Ar.

EPR measurements

To an oxygen-saturated MeCN solution was added the stock MeCN solution of 1^{\degree} (8.3 \times 10⁻⁴ M) in a quartz EPR tube (4.5 mm i.d.) and the solution was immediately frozen by liquid nitrogen. The EPR spectrum of O₂⁻ was taken in a frozen MeCN solution at 77 K using a JEOL X-band spectrometer (JES-FA100) under nonsaturating microwave power conditions. The magnitude of modulation was chosen to optimize the resolution and the signal-to-noise (S/N) ratio of the observed spectra. The *g* values were calibrated precisely with a Mn^{2+} marker which was used as a reference.

The EPR spectrum of 1^t produced in the reaction between 1^{-} (5.0 × 10⁻⁴ M) and DOPPH[•] (5.0 × 10⁻⁵ M) in deaerated MeCN was measured using a LABOTEC LLC-04B EPR sample tube at 298 K. Computer simulation of the EPR spectra was carried out using Calleo ESR Version 1.2 program (Calleo Scientific Publisher) on a personal computer.

Results and discussion

Generation of the phenolate anion of a vitamin E model

When a vitamin E model 1H $(2.0 \times 10^{-4} \text{ M})$ was treated with methoxide anion (MeO⁻) (0–4.0 \times 10⁻⁴ M) produced in the reaction between tetra-*n*-butylammoniumu hydroxide (Bu**4**NOH) and methanol in deaerated acetonitrile (MeCN), the absorption band at 294 nm due to **1H** decreased, accompanied by an increase in the absorption band at 325 nm with clear isosbestic points at 271 and 302 nm as shown in Fig. 1. Such a red-shift of the absorption band is indicative of formation of the phenolate anion.**²⁴** The spectral change is completed by addition of one equivalent of MeO⁻ as shown in the inset of Fig. 1. This indicates that 1H reacts with MeO⁻ to produce the phenolate anion 1^- [eqn (1)]. The resulting 1^- is stable under anaerobic conditions.

Fig. 1 Spectral change observed upon addition of MeO⁻ $(0-2.0 \times$ 10^{-} ⁴ M) to a deaerated MeCN solution of **1H** (2.0 \times 10⁻⁴ M) at 298 K. Inset: plot of the absorbance at 325 nm (Abs**325**) *vs*. [MeO-]/[**1H**].

Electron-transfer oxidation of the phenolate anion of a vitamin E model by O₂

Introduction of molecular oxygen (O_2) to the MeCN solution of **1**- resulted in a decrease in the absorption band at 325 nm due to **1**- as shown in Fig. 2. This spectral change suggests that **1**- is oxidized by O**2** to produce phenoxyl radical **1** and superoxide anion $(O_2^{\bullet -})$ [eqn. (2)]. The formation of $O_2^{\bullet -}$ was confirmed by a low-temperature EPR. A characteristic EPR signal of O_2 ² having a g_{\parallel} value of 2.087 was observed for an O**2**-saturated MeCN solution of **1H** and one equivalent of MeO⁻ at 77 K as shown in Fig. 3.

Fig. 2 Spectral change observed in the reaction of $1 - (1.0 \times 10^{-4} \text{ M})$ with O_2 (1.3 \times 10⁻² M) in MeCN at 298 K (30 s intervals). Inset: plot of k_{obs} *vs*. [O₂].

Fig. 3 EPR spectrum of O_2 ⁻ generated in the reaction of 1⁻ (8.3 \times 10^{-4} M) with O₂ (1.3 \times 10⁻² M) in MeCN at 298 K and measured at 77 K.

On the other hand, the EPR signal of 1^t could not be detected in the reaction between **1**- and O**2** at 298 K because of the instability of **1** (*vide infra*). It is known that the phenoxyl radical species derived from α-tocopherol and its derivatives decompose *via* a bimolecular disproportionation reaction to produce the parent tocopherols and the corresponding twoelectron oxidized products in the absence of O_2 ^{21,25} In the presence of O₂, radical coupling reactions of phenoxyl radical species of α-tocopherol and its derivatives with O₂ are known to occur rapidly to produce a wide variety of oxidized products,**²⁶** which have yet to be identified.

The decrease in the absorbance at 325 nm due to 1^- obeyed pseudo-first-order kinetics under conditions where the O₂ concentration $(1.3 \times 10^{-2} \text{ M})^{22}$ was maintained at more than a 10-fold excess relative to the **1**- concentration. The pseudo-firstorder rate constant (k_{obs}) increases proportionally with increasing O**2** concentration, as shown in the inset of Fig. 2. The slope of the linear plot of k_{obs} *vs*. [O₂] gave the second-order rate constant of the electron transfer (k_{et}) from 1⁻ to O₂ as 6.7 \times 10^{-1} M⁻¹ s⁻¹. The relatively small k_{et} value suggests that the electron transfer from 1^- to O_2 is endergonic, where the oneelectron oxidation potential of $1 - (E^0)_{\infty}$ is more positive than the one-electron reduction potential of O_2 (E^0 _{red} *vs.* SCE = $(-0.87 \text{ V})^{27}$ (*vide infra*). The rate constant of the disproportionation reaction of **1** has been determined as 2.7×10^3 M⁻¹ s⁻¹ in deaerated MeCN at 298 K.**²¹** This value is much larger than the k_{et} value. In such a case, the electron transfer from 1^- to O_2 becomes the rate-determining step, followed by the rapid disproportionation reaction of **1** . Such a follow-up reaction

makes it possible to produce O_2 ⁻ *via* the endergonic electron transfer. However, the detection of **1** becomes extremely difficult.

Oxidation potentials of a vitamin E model and its phenolate anion

As mentioned above, the one-electron oxidation potential of **1**- $(E^0_{\alpha x})$ may be more positive than the one-electron reduction potential of O_2 (E^0 _{red} *vs.* SCE = -0.87 V), leading to the electron transfer from 1^- to O_2 an endergonic process $[\Delta G^0]_{et} =$ $e(E^0_{\text{ox}} - E^0_{\text{red}}) > 0$, where ΔG^0_{et} is the free energy change of electron transfer and *e* is the elementary charge]. Thus, the cyclic voltammetry was performed to determine the oneelectron oxidation potential of **1**- in deaerated MeCN containing 0.1 M Bu**4**NClO**4** as a supporting electrolyte. At a low scan rate (0.10 V s^{-1}) , an oxidation peak current of 1^- was observed with the smaller reduction peak current in a deaerated MeCN solution containing **1H** (2.0 \times 10⁻³ M), MeO⁻ (2.0 \times 10⁻³ M), and Bu**4**NClO**4** (0.1 M). The smaller reduction peak current of 1[•] generated by the electrochemical oxidation as compared to the oxidation peak current of $1⁻$ is ascribed to the instability of **1** , which decomposes *via* the bimolecular disproportionation reaction (*vide supra*). At a fast scan rate (2.0 V s^{-1}) , the CV becomes reversible (Fig. S1†). From the midpoint of the redox peaks of the CV of **1**- was determined the oxidation potential of $1 - (E^0_{\text{ox}})$ *vs.* SCE) as -0.50 V, which is significantly more positive than the E^0_{red} value of O_2 (-0.87 V) as expected above. This result is consistent with the relatively small k_{et} value. Since the one-electron oxidation of **1H** is known to occur at E^0_{ox} *vs*. $SCE = 0.77$ V, the deprotonation of the phenolic OH group in **1H** to form **1**- resulted in the very largely negative shift (1.27 V) of the oxidation potential. Thus, the electron transfer reduction of O**2** becomes possible by the deprotonation of **1H**. A negative shift of the oxidation potential by deprotonation was also observed between $(+)$ -catechin and its anion species. The oxidation potential of (+)-catechin is E^0_{ox} *vs*. SCE = 1.18 V,²⁸ while that of the anion is located at 0.12 V.**²⁹** In this case, however, no O_2 ⁻⁻ is produced by the reaction of the catechin anion with O_2 .³⁰

Efficient radical-scavenging reaction by the phenolate anon of the vitamin E model

When 2,2-bis(4-*tert*-octylphenyl)-1-picrylhydrazyl radical (DOPPH') is used as an oxidant for 1^- instead of O_2 , an electron transfer from **1**- to DOPPH occurred very rapidly in deaerated MeCN at 298 K to produce 1 and DOPPH⁻ (Scheme 1). This is consistent with the largely negative free energy change of electron transfer from $1 - (E^0_{\text{ox}})$ *vs.* SCE = -0.47 V) to DOPPH' (E^0_{red} vs. SCE = 0.18 V). Thus, electron transfer from **1**- to DOPPH is much faster than the bimolecular disproportionation of **1** and too rapid to be monitored using a stopped-flow technique. In such a case, it becomes possible to detect the resulting 1² by EPR. The characteristic EPR spectrum having a *g* value of 2.0047 was observed in the reaction of 1⁻ with DOPPH' (Fig. S2a[†]) and well reproduced by the computer simulation (Fig. $S2b\dagger$) using the hyperfine coupling (hfc) values shown in Scheme 1.

Since the one-electron reduction potentials of a variety of peroxyl radicals **31–35** are known to be more positive than the E^0_{red} value of DOPPH', peroxyl radicals may also be scavenged via electron transfer from 1^- to peroxyl radicals.

In conclusion, the electron-transfer reduction of O_2 by the vitamin E model **1H** under basic conditions takes place to produce superoxide anion $(O_2^{\bullet-})$ in MeCN, where the phenolate anion of $1H(1^-)$ acts as an actual electron donor to O_2 . The one-electron oxidation potential of **1**- is sufficiently negative to reduce DOPPH' to DOPPH⁻. This suggests that the phenolate anion of α-tocopherol can also act as an efficient radical scavenger *via* the electron transfer reactions.

Scheme 1 Reductive DOPPH -scavenging reaction *via* electrontransfer from 1⁻ to DOPPH' and the hfc values of the resulting 1'.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research Priority Area (No. 11228205) and a Grant-in-Aid for Young Scientist (B) (No. 15790032) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, partly by a Grant (MF-16) from the Organization for Pharmaceutical Safety and Research, and by a Grant-in-Aid for the Scientific Research (No. 14141201) from the Ministry of Health Labour and Welfare.

References

- 1 G. W. Burton and K. U. Ingold, *Acc. Chem. Res.*, 1986, **19**, 194.
- 2 M. J. Burkitt, *Arch. Biochem. Biophys.*, 2001, **394**, 117.
- 3 D. Steinberg, *J. Biol. Chem.*, 1997, **272**, 20963.
- 4 C. Smith, M. J. Mitchinson, O. I. Aruoma and B. Halliwell, *Biochem. J.*, 1992, **286**, 901.
- 5 D. J. Lamb, M. J. Mitchinson and D. S. Leake, *FEBS Lett.*, 1995, **374**, 12.
- 6 J. Swain and J. M. C. Gutteridge, *FEBS Lett.*, 1995, **368**, 513.
- 7 Y. Yoshida, E. Niki and N. Noguchi, *Chem. Phys. Lipids*, 2003, **123**, 63.
- 8 K. Kogure, S. Hama, S. Manabe, A. Tokumura and K. Fukuzawa, *Cancer Lett.*, 2002, **186**, 151.
- 9 J. M. Turley, T. Fu, F. W. Ruscetti, J. A. Mikovits, D. C. Bertolette and M. C. Birchenall-Roberts, *Cancer Res.*, 1997, **57**, 881.
- 10 J. Neuzi, I. Svensson, T. Weber, C. Weber and U. T. Brunk, *FEBS Lett.*, 1999, **445**, 295.
- 11 S. Yamamoto, H. Tamai, R. Ishisaka, T. Kanno, K. Arita, H. Kobuchi and K. Utsumi, *Free Radical Res.*, 2000, **33**, 407.
- 12 S. V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic and M. G. Simic, *J. Am. Chem. Soc.*, 1994, **116**, 4846.
- 13 G. Galati, T. Chan, B. Wu and P. J. O'Brien, *Chem. Res. Toxicol.*, 1999, **12**, 521.
- 14 I. Nakanishi, K. Fukuhara, K. Ohkubo, T. Shimada, H. Kansui, M. Kurihara, S. Urano, S. Fukuzumi and N. Miyata, *Chem. Lett.*, 2002, 1152.
- 15 K. Fukuhara, I. Nakanishi, T. Shimada, K. Ohkubo, K. Miyazaki, W. Hakamata, S. Urano, N. Ikota, T. Ozawa, H. Okuda, N. Miyata and S. Fukuzumi, *Chem. Res. Toxicol.*, 2003, **16**, 81.
- 16 N. Yamashita, H. Tanemura and S. Kawanishi, *Mutat. Res.*, 1999, **425**, 107.
- 17 U. Svanholm, K. Bachgaard and V. Parker, *J. Am. Chem. Soc.*, 1974, **96**, 2409.
- 18 G. W. Burton, T. Doba, E. G. Gabe, L. Hughes, F. L. Lee, L. Prasad and K. U. Ingold, *J. Am. Chem. Soc.*, 1985, **107**, 7053.
- 19 K. Mukai, K. Fukuda, K. Tajima and K. Ishizu, *J. Org. Chem.*, 1988, **53**, 430.
- 20 K. Mukai, Y. Kageyama, T. Ishida and K. Fukuda, *J. Org. Chem.*, 1989, **54**, 552.
- 21 I. Nakanishi, K. Fukuhara, T. Shimada, K. Ohkubo, Y. Iizuka, K. Inami, M. Mochizuki, S. Urnao, S. Itoh, N. Miyata and S. Fukuzumi, *J. Chem. Soc., Perkin Trans. 2*, 2002, 1520.
- 22 S. Fukuzumi, M. Ishikawa and T. Tanaka, *J. Chem. Soc., Perkin Trans. 2*, 1989, 1037.
- 23 K. Mann and K. K. Barnes, in *Electrochemical Reactions in Nonaqueous Systems*, Marcel Dekker Inc., New York, 1990.
- 24 S. Itoh, H. Kumei, S. Nagatomo, T. Kitagawa and S. Fukuzumi, *J. Am. Chem. Soc.*, 2001, **123**, 2165.
- 25 V. W. Bowry and K. U. Ingold, *J. Org. Chem.*, 1995, **60**, 5456.
- 26 Y. Nagata, C. Miyamoto, Y. Matsushimama and S. Matsumoto, *Chem. Pharm. Bull.*, 1999, **47**, 923.
- 27 D. T. Sawyer and J. L. Roberts, Jr., *Acc. Chem. Res.*, 1988, **21**, 469.
- 28 I. Nakanishi, Y. Uto, K. Ohkubo, K. Miyazaki, H. Yakumaru, S. Urano, H. Okuda, J.-I. Ueda, T. Ozawa, K. Fukuhara, S. Fukuzumi, H. Nagasawa, H. Hori and N. Ikota, *Org. Biomol. Chem.*, 2003, **1**, 1452.
- 29 C. Cren-Olive, P. Hapiot, J. Pinson and C. Rolando, *J. Am. Chem. Soc.*, 2002, **124**, 14027.
- 30 I. Nakanishi, K. Fukuhara, K. Ohkubo, T. Shimada, H. Kansui, M. Kurihara, S. Urano, S. Fukuzumi and N. Miyata, *Chem. Lett.*, 2001, 1152.
- 31 Z. B. Alfassi, S. Mosseri and P. Neta, *J. Phys. Chem.*, 1989, **93**, 1380.
- 32 G. I. Khaikin, Z. B. Alfassi and P. Neta, *J. Phys. Chem.*, 1995, **99**, 16722.
- 33 G. I. Khaikin, Z. B. Alfassi, R. E. Huie and P. Neta, *J. Phys. Chem.*, 1996, **100**, 7072.
- 34 P. Neta, R. E. Huie and A. B. Ross, *J. Phys. Chem. Ref. Data*, 1990, **19**, 413.
- 35 M. S. Workentin, F. Maran and D. D. M. Wayner, *J. Am. Chem. Soc.*, 1995, **117**, 2120.